
AFFECTIVE COMPUTING
AND INTERACTION IN VR

Corso Realtà Virtuale 2023/2024

susanna.brambilla@unimi.it

WITH UNITY V2022.3.5

AFFECTIVE COMPUTING

AFFECTIVE COMPUTING (AC)
Picard R. (1995)

Affective Computing (AC) aims at developing

systems which can automatically recognize

emotions to give adequate responses

Standard methods:

• Face tracking via cameras

• Voice tracking via microphones

• Physiological signals via sensors

• …

AC APPLICATION

• Education: cameras or microphones can be used to understand students’ emotional states

during lessons helping teachers to adapt themselves to tailor class load

• Healthcare: bots can monitor physical and emotional well-being of patiens or help doctors in

counseling sessions

• Marketing: AC can analyze what makes customers engaged or their reactions to new products

and companies could organize accordingly

• Entertainement: gaming companies can use AC for testing their games monitoring players’

satisfaction level, but AC can be also useful to support the game adaptation to players’ mental

state

• …

AC AND VR

Why VR?

• High degree of immersion

• Elicit stronger emotional reactions

• Gather different types of data

• Realistic experience in a controlled and safe setting

It provides simulated experiences that create the sensation of being in the real world.

Thus, VR makes it possible to simulate and evaluate spatial environments under

controlled laboratory conditions

AC TECHNIQUES IN VR

• Face tracking

• Eye tracking

• Voice signal

• Motion-behavioral data

• …

OVRInput

OVR INPUT

With OVRInput it is possible to track input features that you can take advantage of

when you design user interactions

Data:

• Positions

• Rotations

• Touch

• Buttons

• Joysticks

Map Controllers | Oculus Developers

https://developer.oculus.com/documentation/unity/unity-ovrinput/?locale=it_IT

OVR INPUT USAGE

The primary usage of OVRInput is to access controller input state through:

• Get() queries the current state of a controller

• GetDown() queries if a controller was pressed this frame

• GetUp() queries if a controller was released this frame

You can access:

• Virtual mapping: provides a virtualized input mapping (smoothed)

• Raw mapping: directly exposes the controllers

RAW CONTROLLER MAPPING

INITIALIZATION 1/2

1. Download the ‘Ex05-01’ folder from github and open the OVRInput_Demo Unity project

You will find a SampleScene without camera and with a plane and a Player prefab in the

OVRInput_demo folder

2. Drag the Player prefab in the Hierarchy

3. Create a script and call it ‘OVRInput_tracker’

INITIALIZATION 2/2

We need a function to save the timestamp:

We need to check the presence of the controllers (both left and right) and the head:

• If left/right controller/head found -> data are valid

• If left/right controller/head not found -> data are not valid

Put them in the FixedUpdate()

FEATURES

Different values from controllers:

• Position, velocities -> Vector3

• Orientation -> Quaternion

• Button pressure -> float (range 0-1)

• Button pressed -> int [0-1]

• Thumbstick position -> Vector2

Different values from HMD:

• Position, velocities -> Vector3

• Orientation -> Quaternion

HEAD

In order to take the reference of the player’s head:

In order to take the head position, orientation, and velocities:

CONTROLLERS

In order to reference, e.g., the left controller of the Quest Pro:

In order to take the controller position, orientation, and velocities:

BUTTONS

You can reference a specific

button of your controller, by

accessing controllers

mapping

For example, if you want

have a reference of the left

trigger:

OVR INPUT CONSOLE

For example, if we want to get the float value of the pressure on the left controller trigger:

1. In your scene, create a new UI with right mouse click in the Hierarchy > Canvas and set its

render mode to World Space

2. Select the Canvas object and right mouse click > UI > TextMeshPro, when promped click

Import TMP Essentials

3. Scale the Canvas and the Text and place them in front of the Player prefab

4. Select the Text object and, in TextMeshPro - Text component, change ‘New Text’ into ‘VR

input log’

LOGS

1. You need two fields:

1. A public TextMeshProUGUI which defines

the area where we want to display logs

2. A private int to define the max num of

lines allowed

2. You need also a function to print the

logs and a function to clear the lines

where the maximum allowed is

reached:

PRINT LEFT CONTROLLER LOGS

1. In the FixedUpdate() function, we need to call the CollectOVRInputControllerButtonData()

function

2. We will print the logs calling the LogInfo() function and giving it as input the triggerValue

N.B. we call the functions only if the target device has been found

RESULTS

• In the Hierarchy, create a new empty GO with: right mouse click > Create Empty and call it

‘Input Manager’

• Attach the ‘OVRInput_tracker’ script to the Input Manager GO by dragging it to the GO

• Assign the ‘Text (TMP)’ object (children of Canvas) to the ‘Log Area’ variable

• Press Play

	Diapositiva 1: AFFECTIVE COMPUTING AND INTERACTION IN VR
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21

