
AFFECTIVE COMPUTING
AND INTERACTION IN VR

Corso Realtà Virtuale 2023/2024

susanna.brambilla@unimi.it

WITH UNITY V2022.3.5

GAZE AND FACE TRACKING

GAZE TRACKING

ONLY on the Quest Pro, Gaze tracking is available

It refers to the detection of eye movement, which is used to drive an eye transform on an

avatar as the user looks around

Eye Tracking for Movement SDK for Unity: Unity | Oculus Developers

https://developer.oculus.com/documentation/unity/move-eye-tracking/

OVRGAZE

The OVREyeGaze component will update the GameObject’s position and orientation based on

the real human’s eye movement

There are 3 types of tracking mode:

• World Space tracking mode will convert the eye pose from tracking space to world space

• Head Space tracking mode will convert the eye pose from tracking space to local space

which is relative to the VR camera rig

• Tracking Space is raw pose information from VR tracking space.

FACE TRACKING

Creating a character with face tracking consists of

• creating the character to be represented with blendshapes that represent the facial

expressions of your character

• adding the scripts to the character containing the blendshapes to read the API and map the

expressions detected into the character blendshape

The Face Tracking API converts the facial movements detected by the headset sensors into

activations of expression as weights between 0 and 1

Up to 63 expressions detected by the sensors, based on the Facial Action Coding System (FACS)

Face Tracking for Movement SDK for Unity: Unity | Oculus Developers

https://developer.oculus.com/documentation/unity/move-face-tracking/

OVRFACEEXPRESSIONS

Some of the face-related scripts are distributed in the sample and not in Meta XR All-in-One

SDK. As such, it is necessary to download the samples Oculus Samples GitHub repo to have

access to these scripts.

The OVR Face Expressions component queries and updates face expression data every frame

https://www.oculus.com/lynx/?u=https%3A%2F%2Fgithub.com%2Foculus-samples%2FUnity-Movement&e=AT0eQIf5BtGxdxSviYK8BqasQPEnGj0yP7vP4W_geTyHKZUO_c8TYh4ZG10at9Gr2pAC0Pn0Pa9Wdf-1DIdM72Hl9dxE-nHI4tzVKeFIAhzHz_ALc-Z88X5tdetHkxlcJNB9fGplkoAwMk5LAJ-enp7XwVHkpiuwWhX1Ag

INITIALIZATION 1/2

1. Download the ‘GazeFace_demo’ project from github

You will find a EyeFace scene without camera and with a plane, drag the Player prefab
you find in the EyeFace_demo folder and drop it in the Hierarchy

In the FaceEye_demo folder folder you can find three other prefabs taken from Oculus
Samples:

• AuraFirstPerson: the character with blendshapes

• AuraMirrored: the avatar which will mirror the character movements

• MirrorTransformation: to mirror the character, so that the user can see their facial
emotions and gaze animate in real time

INITIALIZATION 2/2

2. Add the AuraFirstPerson prefab in the Hierarchy

3. Create a new Empty GO by clicking the right mouse button

in the Hierarchy and call it MirroredObjects

• Add under the MirroredObjects the AuraMirrored prefab

• Drag and drop the AuraFirstPerson object in the Skeleton To

Copy filed of Late Mirrored Skeleton script of AuraMirrored and

click on Get Mirrored Bone Pairs button:

4. Add the MirrorTransformation prefab to the Hierarchy

• Drag and drop the MirroredObjects GO in the Transform To

Mirror field of Mirror Transformation

• If necessary, reset the position of AuraMirrored object

PLAY

Press play… you will see that AuraMirrored will

copy your facial expressions and gaze

movements

EYEFACE_TRACKER SCRIPT

Open the EyeFace_tracker script

This script is in charge of getting facial and gaze movements

The script need to be attached to an object with a OVRFaceExpressions script on it, in order to

acquire all the data

We need a variable to store the information from OVRFaceExpressions:

and get it in Start():

COLLECT EYE DATA

In order to get Eye-related data, we need a reference to the eyes:

We can collect eye name and position using:

Call this function in FixedUpdate() for both eyes

COLLECT FACIAL DATA

In order to get face-related data we first need a list of float to store all the blendshapes

weights:

If we want to find a single blendshape, e.g. the inner brow raiser left:

VISUALIZE DATA 1/3

1. In the editor, create an empty GO and call it DataTracker

2. Attach the script ‘EyeFace_tracker’ to the DataTracker object

3. Check the Take Eye Data and Take Face Data fields

4. Create two Empy GOs as children of DataTracker and call them Left/RightEye

VISUALIZE DATA 2/3

1. Attach the OVR Eye Gaze script to the Left/RightEye Gos

1. Select the Eye field for each eye

2. Change the Tracking Mode to World Space

2. Add the Left/RightEye to Left Eye and Right Eye fields of the EyeFace_tracker script

VISUALIZE DATA 3/3

5. Create some Cubes and, in top right part of the Inspector, assign them a new Layer called

‘Cube’

6. Open the GizmoModule folder and drag and drop the GimoModule prefab in the Hierachy

7. Attack the GazeLine script you can find in the GizmoModule folder on the Left/RightEye GOs

• Change Cursor Radius to 0.05

• Change Mask to Cube

RESULT

…press Play and see the result!

GAZE POINTER

If you want to control element in the scene, e.g., UI elements, you should use the OVR Gaze

Pointer script:

Assign the Center Eye Anchor to the Ray Transform field

	Diapositiva 1: AFFECTIVE COMPUTING AND INTERACTION IN VR
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18

