
AFFECTIVE COMPUTING
AND INTERACTION IN VR

Corso Realtà Virtuale 2022/2023

susanna.brambilla@unimi.it

WITH UNITY V2020.3.0

Affective Computing (AC) aims at developing

systems which can automatically recognize

emotions to give adequate responses

Standard methods:

• Face tracking via cameras

• Voice tracking via microphones

• Physiological signals via sensors

• …

• Education: cameras or microphones can be used to understand students’ emotional states

during lessons helping teachers to adapt themselves to tailor class load

• Healthcare: bots can monitor physical and emotional well-being of patiens or help doctors in

counseling sessions

• Marketing: AC can analyze what makes customers engaged or their reactions to new products

and companies could organize accordingly

• Entertainement: gaming companies can use AC for testing their games monitoring players’

satisfaction level, but AC can be also useful to support the game adaptation to players’ mental

state

• …

Why VR?

• High degree of immersion

• Elicit stronger emotional reactions

• Gather different types of data

• Realistic experience in a controlled and safe setting

It provides simulated experiences that create the sensation of being in the real world.

Thus, VR makes it possible to simulate and evaluate spatial environments under

controlled laboratory conditions

• Face tracking

• Eye tracking

• Voice signal

• Motion-behavioral data

• …

With OpenXR it is possible to track input features

that you can take advantage of when you design

user interactions

Data:

• Positions

• Rotations

• Touch

• Buttons

• Joysticks

Unity - Manual: Unity XR Input (unity3d.com)

https://docs.unity3d.com/Manual/xr_input.html

1. Open the script called ‘XRinput_demo’

2. In order to use the XR functions, you have to add the XR namespace:

3. We need a private list to store the connected devices (in our case, controllers and headset):

4. We also need some variables to store the reference of the target device:

We need to constantly check the presence of the controllers (both left and right):

• If left/right controller found -> buttons and inputs can be checked

• If left/right controller not found -> buttons and inputs can’t be checked

1. We need a private boolean variable which checks if the target device has been

found:

2. We need a function to search for the target device:

• If the device is found the boolean variable is set to true

• Else the boolean variable is set to false

3. The function Initialize has to be called:

• In Update, only if the boolean deviceFound is set to false

• Else we will retrieve the desired value

Each device has its own characteristics

1. If we want to find the HMD in the list, we need to check all the devices’ characteristics in order

to find the one that matches with the characteristics ‘HeadMounted’, in the Initialize() function

2. Then, we need to assign the device found to the targetHead variable in the Initialize() function,

only if the devices.Count > 0:

You can get different values from controllers:

• Velocities and accelerations -> Vector3

• Button (grip/trigger) pressure -> float (range 0-1)

• Button (grip/trigger) pressed -> int [0-1]

• Thumbstick position -> Vector2

You can get different values from HMD:

• Velocities and accelerations -> Vector3

If you want to access the current state of the device, you have to call the function
InputDevice.TryGetFeatureValue()

To get a particular button value or input, you must use the CommonUsages class:

CommonUsages defines static variables used to retreive input freatures from TryGetFeatureValue

Unity - Scripting API: CommonUsages (unity3d.com)

https://docs.unity3d.com/ScriptReference/XR.CommonUsages.html

For example, if we want to get the head velocity value:

1. In your scene, create a new XR UI with right mouse click in the Hierarchy > XR > UI Canvas

2. Select the Canvas object and right mouse click > UI > TextMeshPro, when promped click

Import TMP Essentials

3. Scale the Canvas and the Text and place them in front of the XR Rig

4. Select the Text object and, in TextMeshPro - Text component, change ‘New Text’ into ‘VR

input log’

1. You need two fields:

1. A public TextMeshProUGUI which defines the area where we want to display logs

2. A private int to define the max num of lines allowed

2. You need also a function to print the logs and a function to clear the lines where the

maximum allowed is reached:

1. In the Update() function, we need to call the

GetHeadsetVelocityValue() function, giving

the targetHead as InputDevice

2. We will print the velocity logs calling the

LogInfo() function and giving it as input the

magnitude of the head velocity

N.B. we call the functions only if the target

device has been found

• In the Hierarchy, create a new empty GO with: right mouse click > Create Empty and call it

‘Input Manager’

• Attach the ‘XRinput_demo script to the Input Manager GO by dragging it to the GO

• Assign the ‘Text (TMP)’ object (children of Canvas) to the ‘Log Area’ variable

• Press Play

	Diapositiva 1: AFFECTIVE COMPUTING AND INTERACTION IN VR
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20

