
VR best practices
and UI design

Lab 12

Manuel Pezzera

manuel.pezzera@unimi.it

mailto:manuel.pezzera@unimi.it

Designing VR applications

ONE MAIN GOAL

MAXIMIZE USER IMMERSION

2

What can go wrong?

 Sensory conflict

 Unnatural stimuli in the virtual world may lead to bad VR

experience and sometimes to VR sickness

 VR Sickness

 Some people are more sensible to sensory conflicts and

may feel sick while using your VR applications

 User Safety

 It is important to be concerned about user safety when

designing VR application as while operating in the virtual

world they are more vulnerable in the real world.

3

Sensory conflict

 Happens when perception of self motion is based on

incongruent inputs from visual, vestibular and non-

vestibular systems.

4

VR Sickness

 Sensory conflict appear to be one of the main cause of

VR sickness.

 We should be aware of this problem when integrating

locomotion inside our VR application

5

GOOD NEWS

• The more time users spend
using VR, the less likely they
are to experience
discomfort, this is caused by
our brain learning to
reinterpret visual anomalies

How to minimize sickness issues

 Always respond to user inputs, even on menus, while

game is in pause etc.

 Do not instigate movements without user inputs (e.g.,

rotate camera while user is not moving the head)

 Movement in Virtual World should be consistent with head

and body movements.

 Think very well on how to implement locomotion in your

application, the safest (even if harder) option could be to

avoid locomotion by design.

6

Mind users’ safety

https://www.youtube.com/watch?v=0KcllPEe8y8
7

https://www.youtube.com/watch?v=0KcllPEe8y8

Mind users safety

 Allowing users to freely move in the real world while
blinded by a VR headset, tends to be a bad idea in
general.

 However, finding a good solution to this open problem,
would greatly improve VR experience.

8

HTC Vive solutions to
this problem is to place
some gizmos in the VR
world that remind the
users where the
boundaries of the safe
movement area are in
the real world.

Locomotion in VR

 Acceleration vs. Speed

 While acceleration seems to be the primary

cause of discomfort in VR experience, it

appears there is no straightforward

relationship between speed and discomfort.

 General guidelines:

 Allowing the user to set the pace of

movement may help in control discomfort

 Forward movement is more natural than

backward or side movement

 Open spaces with respect to enclosed spaces

are known to be more comfortable to users.

9

Locomotion Techniques

 No locomotion by design: To completely avoid locomotion

discomfort, it is possible to design VR application that do

not require locomotion at all (when possible).

 Teleportation: Allows users to move around the scene

without having to deal with accelerations.

 Artificial movement: Moving on a railroad or on a

predefined path at a fixed speed.

 Fade to black: Like teleportation, fade to black before

switching location.

 HMD acceleration: Use HMD accelerometers and gyroscopes

to allow users to control movement direction (e.g., airplane

movement).

10

Interaction techniques (1)

 Gaze based interaction (Staring at objects causes

something to happen in virtual world)

 Requires a UI element to show what exactly we are pointing

to (e.g., little dot in the middle of the screen)

 Dedicated controllers (e.g., Gear VR, Oculus or HTC Vive

controllers)… usually 3 or 6 DOF

 Good practice is to render the controller in the virtual

world, with a ray coming out from it showing where the user

is pointing at.

 Changes in ray or target colors are encouraged to provide

feedback on the presence of an interactable object

11

Interaction techniques (2)

 Hands (Leap motion controller):

 Rendering hands in the scene may greatly enhance VR experience,

however, render a whole avatar only if you are sure that it will be

perfectly aligned with the user real position.

 Mind Hardware Limitation, leap motion work best when hands are right in

front of the HMD, so design your applications to encourage user to interact

with the world in this way. Also consider the Leap field of view when

designing your app (Do not require users to look at one side and interact

with an object placed far away from where they are looking)

 Other way? Custom Hardware? It’s a good project idea!

12

Catching user's attention

 This is particularly important in 360° videos, but

meaningful also for real time applications. The main

action in a video may happen in a place where the user is

not looking at…

13

Catching user's attention

 An example of use of good design practices can be observed here…

14

https://www.youtube.com/watch?v=BEePFpC9qG8

https://www.youtube.com/watch?v=BEePFpC9qG8

Catching user's attention

How To?

15

• Lighting effects: focus lights on the place you
want the user to look at.

• Visual effects: also, particles, in-world UI
elements (such as arrows), etc. may be used to
focus on a particular element of the scene.

• Spatial Audio: information on where something
interesting is happening in the scene may be
provided by audio effects, spatialization will
help the user find the source of the audio easily!

UIs

16

Diegetic UI: Interface that is included in the game world

Non-diegetic UI: Interface that is rendered outside the game world, only

visible and audible to the players in the real world

Spatial UI: UI elements

presented in the game's 3D space

with or without being an entity

of the actual game world

Meta UI: Representations can

exist in the game world, but

aren't necessarily visualized

spatially for the player

UIs in traditional games

 Called Non-Diegetic UI

 Used to show health, score…

 It does not exist in the world

17

UIs in traditional games -
Unity

18

• Screen Space – Overlay

• Canvas is scaled to fit
the screen

• UI drawn over any other
graphics

UIs in traditional games -
Unity

19

• Screen Space – Camera
Render Mode

• Canvas is rendered as if it
were drawn on a plane
object some distance in
front of a given camera

• Objects that are closer
than the plane will be
rendered in front of the UI

UIs in VR

 Traditional UI does now work in VR

 Our eyes are unable to focus on something so close

 Screen Space-Overlay is not supported in Unity VR

 Solution?

 Diegetic UI or Spatial UI!

20

Diegetic UI

 Interface that is included in the game world -- i.e., it

can be seen and heard by the game characters

21

Spatial UI

 UI inside the world

 Rendered if it were a plane object

in the scene

 Plane oriented however you like

22

Spatial UI and Diegetic UI

 Where should it be placed?

 Too close to the user can cause eye strain

 Too far away can feel like focusing on the horizon

23

Spatial UI and Diegetic UI

 Where should it be placed?

 It’s best to position your UI at a comfortable reading

distance and scale it accordingly.

 Many developers will initially attach the UI to the camera,

so that as the player moves around the UI will stay in a

fixed position

 This can lead to user discomfort or nausea!

24

Content Zones for VR

25

Content Zones for VR

 Content Zone: area of comfortable head rotation and view

where things still give stereoscopic depth perception.

 Peripheral Zone: The area visible with maximum head

rotation. Environment will still be seen more regularly, but

no long-term content should be put in this zone

 Curiosity Zone : the user is literally turning their shoulders

and trying with some effort to see what’s behind them

 No-No Zone: As things get close to the face, the user

becomes cross-eyed and experiences eye strain. Nothing

should be displayed in this sphere around the head

 Skybox Zone - after 200m, the two displays are essentially

showing the same image pixel for pixel and there is no

depth perception.

26

Catching user's attention

 Example of UI used to catch user's attention

27

Types of UI

 Flat: difficult to read text or
images in perspective. There is
no sense of grounding in the
space.

 Curved: The content is curved
around the user, easier to read
text or images.

 Less content: Better, even if
that requires some way to move
through it.

 Surrounded: Hierarchy can be
implied by nearness to the cone
of focus. Secondary content can
be pushed out of immediate
view but still remain accessible.

28

Feedback: Everything Should
Be Reactive

 Every interactive object should respond to any casual

movement.

 Any casual touch should provoke movement

 The kinetic response of the object coincides with a mental

model, allowing people to move their muscles to interact

with objects.

29

Interaction and feedback

30

Gesture Descriptions

 Text- or audio-based tutorial prompts can be essential

for first-time users

 Be as specific as possible to get the best results, using

motions and gestures that track reliably.

31

Interactive Element
Targeting

 Appropriate scaling

 Ensures the user can accurately hit the target without

accidentally triggering targets next to it.

 Limit unintended interactions

 Be sure to space out UI elements so that users don’t

accidentally trigger multiple elements.

 Limit hand interactivity

 Make a single element of the hand able to interact with

buttons and other UI elements.

32

Unity Demo

 Let’s see a small demo about UI and UX.

33

Unity Tips & Best practices

34

Scene management

 Make every scene runnable

 To speed up debugging, it is important that each scene is

runnable, without having to switch between other scenes

(e.g., having to start the main menu to test the game

scene).

35

Unity/Package Update

 Be careful when updating Unity or any of the packages

you are using (e.g., URP/HDRP).

 If you're close to a final release, it's probably best not to

update.

 In any case, always test thoroughly, and eventually roll

back (via Git, not other weird methods).

36

Third-party assets

 Don't crack free assets (and no, you can't download

them for free from unlikely sites).

 It might be better to import the packages into another

project and copy only what you really care about (many

packages have many models/textures that maybe we

are not interested in).

37

Build process automation

 As a student, you have Unity Pro for free, which also

includes online services, such as Cloud Build (service to

build automatically).

 You can synchronize Cloud Build to build every time a

commit is pushed to a given branch on a GitHub

repository

 You can use GitFlow and use the Master/Main branch for

major updates and build automatically.

38

Use Assertions

 Assert.IsNotNull(element)

 Assert.IsTrue(A == B);

 These are just two examples of assertions. The magic of

Asserts is that they work exclusively in the editor and

development build, they are removed from the final

build, so you can abuse them in development without

worrying about final performance.

39

Use Coroutine (but be
careful)

 Use Coroutines, they allow the code to be interrupted

and can help make it much more readable.

 On the other hand, misusing them may make everything

more complex, so be careful.

40

Game/App Localization

 If you plan to develop a multi-language game, the

problem should be addressed immediately.

 You can develop your own translation system (e.g., several

files with game strings).

 Or use the Localization package provided by Unity (still in

preview, be careful).

41

https://docs.unity3d.com/Packages/com.unity.localization@0.4/manual/index.html

Use C# Properties

 In some case, you may want a variable to be only

readable from outside the class. In this case, you can

use C# property.

 private float myVariable;

 public float MyVariable => myVariable;

 In this way, outside the class you will be able to read the

value of MyVariable, but you will not be able to change it.

42

Use C# Properties 2

 Again, properties can allow you to do advanced operation when you
read/write a variable.

 private float myVariable;

 public float MyVariable {

get

{

return myVariable; // Here you can do whatever you want

}

set

{

myVariable = value; // Here you can do whatever you want

}}

43

Use Custom Editor

 If you have advanced script that can be

configured from the Inspector (e.g., a

script to generate a new level), use

Custom Inspector to create more

friendly interface.

44

Custom Class in inspector

 You may have your own class, you set it [SerializeField], but it is now

showing up in the inspector.

 Wondering why?

 Use [System.Serializable] public class MyClass {}

 It will magically show up.

45

Inspector Variable

 Pay attention when you declare the value of a variable with the

definition of the variable.

 public int MyVariable = 100;

 If you change its value from the Inspector, it will no longer be 100

46

Do not use Static Field

 Simple and clear rule. You should avoid using static

variables as much as possible.

47

C# Region

 Use region to better organize the code.

48

LINQ

 Use LINQ to make the code more concise.

 But pay attention, using LINQ too much could make the code less

readable sometimes. Performance is also at risk.

49

GameObject gameObjectToFind = null;

foreach(var go in yourListOfGameObjects)

{

if(go.CompareTag("fooBar"))

{

gameObjectToFind = go;

break;

}

}

var gameObjectToFind = yourListOfGameObjects.FirstOrDefault(go => go.tag == "fooBar");

Use prefabs and nested
prefabs

 From 2018.3, Unity allows nested prefab, they can be really useful to

allow you the assets reuse.

50

Scriptable objects

 You can use scriptable

objects to store

information, in this way

you do not need to attach

a script to a GameObject.

51

Debugging

 Unity has a few functions that can be helpful for debugging:

 Debug.Log, Debug.LogWarning, Debug.LogError

 Debug.Break (pause the execution)

 Debug.DrawRay & Debug.DrawLine (useful for debugging raycasts, for

example)

 Use Gizmo for visual debugging

52

Debugging

 Debug.Log, Debug.LogWarning and Debug.LogError allow to
specify a second parameter:

Debug.Log(“Hello”, this.gameObject);

 In this way, clicking on the message in the console, the
GameObject given in input will be selected in the inspector.

 Really useful if you do not know from which object the log is
coming.

 You can also change the style of the text:

Debug.Log(“<color=red>Red message/<color>”);

 For complex things use breakpoints, not Debug.Log

 I know, Logs are nice and beautiful, but not always effective.

53

Debugging

 A variable could change every frame, in this cases, it’s easy to

find a mistake printing its value every frame.

 A better way, it’s to use the AnimationCurve class, to show

the trend of the variable.

54

public AnimationCurve plot = new
AnimationCurve();

private void Update()
{

plot.AddKey(Time.realtimeSinceStartup,
Mathf.Sin(Time.time));
}

Optimization: Stats &
Profiler

55

 Use Stats button to analyze the performance of your game/app.

 If you want to discover exactly where the performance issue is,

you can use the Profiler.

Optimization: Profiler

56

 If you want to measure exactly how much heavy is a

method/piece of code:

private void Update()
{

UnityEngine.Profiling.Profiler.BeginSample("CodeToTest");
MyMethod();
UnityEngine.Profiling.Profiler.EndSample();

}

Optimization: String Builder

 String concatenation can be very heavy, if performed

several times each frame.

 Instructions like:

 should be avoided.

 Instead of them, you can use the StringBuilder:

57

StringBuilder b = new StringBuilder();
for (int i = 0; i < 5; i++)

b.Append(i).Append(" ");
Debug.Log(b);

Debug.Log("Hel" + "lo" + " " + "wo" + "rld");

Optimization: Cash object

58

 Access multiple time to properties like

transform or position is inefficient.

 Cache them into class variable to

optimize.

Optimization: Camera.main

59

 Never used Camera.main to get the reference of the main

camera.

 It has been improved in the last few years, however, right

now it is roughly as expensive as GetComponent.

Optimization: GetComponent

60

 But, unfortunately, also GetComponent is quite inefficient,

try to avoid it in Update.

Optimization: Null comparison

61

 Try also to avoid null comparison in Update.

 This could be harder to avoid, sometimes you maybe can’t

avoid it.

 You can try to move something in the Awake/Start and reduce

the workload of the Update method.

Debugging: Unity services

 Being a student, you have access to the Unity services,

which include Unity Analytics.

 You can create CustomEvent, that will be send to the

Unity dashboard. In this way, you can remotely analyze if

and how players play your game (e.g., how many of them

win/lost a certain level, and so on).

62

Analytics.CustomEvent("gameOver", new Dictionary<string, object>
{

{ "potions", totalPotions },
{ "coins", totalCoins }

});

https://docs.unity3d.com/ScriptReference/Analytics.Analytics.CustomE

vent.html

https://docs.unity3d.com/ScriptReference/Analytics.Analytics.CustomEvent.html
https://docs.unity3d.com/ScriptReference/Analytics.Analytics.CustomEvent.html

Code execution without
empty GameObject
 If you want to execute a piece of code without adding an

empty GameObject, you can use the attribute
[RuntimeInitializeOnLoadMethod(RuntimeInitializ
eLoadType.AfterSceneLoad)]

 You can use it also with a static class and a static

method, without using Monobehaviour or adding it to the

scene.

63

[RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.AfterSceneLoad)]
public static void Do()
{

Debug.Log("Do()");
}

Calculating distance
between object
 Use sqrMagnitude instead of Vector3.Distance to

calculate the distance between two points, it’s faster.

64

if (Vector3.Distance(a, b) < 100)
{

}

if ((a - b).sqrMagnitude < 100 * 100)
{

}

TextMeshPro vs Text

 Use TextMeshPro components

(e.g., Text, Button), do not use

old standard component like

«Text».

65

Attribute

 [SerializeField]

 [HideInInspector]

 [FormerlySerializedAs]

 [Header(«Title»)]

 [Range(1,5)]

 [Tooltip(«bla bla bla»)]

 [RequireComponent(typeof(AudioSource))]

 [TextArea(minLines: 3, maxLines: 6)]

 These are just some examples of Attribute that can be used and

that can help you.
66

[SerializeField]

 If you do not want to set Public all your variables in

order to be able to modify them from the inspector,

mark them with [SerializeField], to allow them to be

visible.

 [SerializeField] private float myVisiblePrivateField

67

HelpUrl Attribute

68

 In complex project, remember to have an update

documentation.

 You can also define a url that will be open when you

click on the help button of a particular script.

using UnityEngine; using UnityEditor;

[HelpURL("http://example.com/docs/MyComponent.html")]
public class MyComponent
{

}

https://docs.unity3d.com/ScriptReference/UnityEditor.html

MenuItem/Context Menu

69

 MenuItem and ContextMenu attributes allow you to

define an item in the menu or context menu that call a

method. Really useful in editor, if you want to test/try a

certain method.

[MenuItem("MyMenu/Do Something")]
private static void DoSomething()
{

Debug.Log("Doing Something...");
}

[ContextMenu("Do")]
Private void Do()
{

Debug.Log("Doing Something...");
}

Collider interaction matrix

70
https://docs.unity3d.com/Manual/CollidersOverview.html

https://docs.unity3d.com/Manual/CollidersOverview.html

Math in Inspector

71

 You can type custom operation in inspector, pressing

Enter will calculate the result for you.

Inspector: Lock & Debug

72

 You can lock the inspector. Opening a second inspector

will allow you to compare the values of the current

selected object, with the previously selected one

(represented by the locked inspector).

 It is also possible to enable the Debug mode. This will

allow you to see also the value of the private

parameters.

Editor Customization

73

 Remember that you can

customize the color

and layout of the editor

as you prefer.

Editor Windows

74

 You can create your

own windows and

tools to manage

whatever you want.

 In the same way, you

can also create

custom inspector.

Selection

75

 You can save and load selections of one or multiple objects.

Design Pattern: Singleton

 Singleton class can be very useful.

 You can refer them from anywhere in the code, and they ensure you

that there will be one and only one instance of that class.

 But don't abuse it. Static fields are always bad to use.

76

public class SomeClass : MonoBehaviour {
private static SomeClass _instance;

public static SomeClass Instance { get { return _instance; } }

private void Awake()
{

if (_instance != null && _instance != this)
{

Destroy(this.gameObject);
} else {

_instance = this;
}

}
}

Design Pattern: Object Pooler

77

Source: https://www.raywenderlich.com/

https://www.raywenderlich.com/

Design Pattern: Object Pooler

78

Source:

https://www.raywenderlich.com/

https://www.raywenderlich.com/

Design Pattern: Object Pooler

 Instead of instantiating and destroying objects repeatedly (very

computationally heavy), it is more convenient to disable and

reuse objects.

 For bullets, for example, after a few seconds and/or when they

are no longer visible, we can automatically disable and reuse

them.

 Beware of initialization, disabling and re-enabling an object will

not invoke Awake / Start again.

 There are several implementations of this pattern on Google.

79

Git/Github

 Use Git (or another similar software)

 Always use Git (even when working alone). If you don't

have enough practice, practice.

 You can use it both from the command line and from the

GUI (e.g., SourceTree, GitKraken - free for students).

 You can (and maybe should) upload the repository to

Github (Pro version free for students).

80

Git

 It is necessary to use Git and Github during the development of

the project.

 In the next slides we see a very simple guide on how to use it.

 First thing: download Git

 Open Git Bash (right click wherever you want -> “Git Bash

Here”)

 git config --global user.name «your username»

 git config --global user.email «your.mail@domain.com»

81

https://git-scm.com/downloads

GitHub

 Github is required to upload your project on a server.

 You could use Git without Github, but if you want to work with

someone else or have a backup online, you must use Github or

similar services (e.g., BitBucket).

 For the project Github is required, so you need to register and

account.

82

https://github.com/

Git – Create new repository

 To create a new repository, just type:

git init

 This will create a new repository. Now, we need to commit

something.

 A commit represents a snapshot of your work. This way, you can

always keep track of your changes and possibly revert to a

previous version if there is something wrong with the current
version.

83

Git – Open an existing
repository

 If you want to open an already existing repository, you have to

use the following command:

git clone UrlOfTheRepositoryYouWantToClone

 This will start the download of the repository located at the url

you have typed.

84

Git – Git Status

 Before commit something, you probably want to control what

you have modified.

 You can do it with the command

git status

 Now you can add the file you want to commit:

git add your_file_name

git add .

 This will move your file to the stage area, they are ready to be

committed.

85

Git – Git Commit

 Once you have selected all the files you want to commit, you can
commit them using the command:

git commit –m "Description of the commit"

 Now you have successfully created a new commit.

 You are now ready to push it to a remote repository, in this way, your
colleagues (or yourself, with another computer) can download the
updated version of the project.

 The first time, if you have never pushed the repository to a remote
server, you must setup the remote url with the command:

git remote add origin <REMOTE_URL>

 This must be done only once, the first time. You do not need it if you
have cloned an already existing repository.

86

Git – Git push

 You can now push your commit with the command:

 git push origin main

 Where main is the name of your branch.

 It could happen that you can’t push your commit to the

repository, this happens if you are not up to date with the

remote repository commit.

 In this case, you must before pull the update, merge them with

your local repository, and then push all the update.

87

Git – Git pull

 To download the commits from the remote repository, you must

use the following command:

git pull

 Be careful, if you have not pushed commit, there is the

possibility that you have one or more conflicts. A conflict

happens when the same file has been modified both on the

remote repository and on your local repository.

 In this case, you must merge the two files (or, eventually, discharge

your modification).

88

Git – Git checkout/Branch

 One terrible day, you have to do a huge refactoring of the

project; this will render the project unusable for a few days,

until you have completed the process.

 You do not want to break the project for all your colleagues. But,

at the same time, you do not want to work for days without

pushing your commit; if your computer dies, you can lose your

work.

 In these cases, you can switch to another branch, you will be

able to push your commits without break the work of your

colleagues.

89

Git – Git checkout/Branch

 To create a new branch:

git branch nameOfMyBranch

 To switch to another branch:

git checkout nameOfMyBranch

 Now, you can commit and push your work on the branch you have

checked out.

90

Git – Git checkout/Branch

 Once you have finished your fantastic refactoring process, you

are now ready to merge your work with the main branch.

 First of all, you need to switch to the main branch:

git checkout main

 Eventually, do “git pull” to update your main branch, if not

updated.

 Now, merge your work with the main branch:

git merge nameOfMyBranch

 Be prepared to merge problems, you have to fix them before

being able to merge and push your work.

91

Git – Git checkout/Branch

 This was a very simple and short guide to Git; actually, there are

many other features and commands that I have not mentioned.

Like:

 git log, stash, revert, cherry-pick

 Git flow

 Git Hooks

 If you are interest you can check out a more advanced

tutorial/video to see all the features.

92

Github

 Github is useful not only for collaborate with your colleagues and

as a remote backup, but it also has other very interesting

features:

 Issues

 Wiki

 Marketplace

93

Issues

94

Wiki

95

Git: GUI

96

 It’s possible to use git through a Graphical User

Interface (GUI).

 E.g., GitKraken, SourceTree, GitHub Desktop

 Even if you use one of those, it’s important that you are

still able to use the command line.

Git: GUI – Add files

97

Git: GUI – Commit lists

98

Git: GUI – Commit, Pull,
Push, Branch

99

Unity Learn

100

 Questions, want to learn new things?

 Best recommeded sources for learning

 Unity Learn

 Unity Forum

 Youtube (e.g., Brackeys)

 Best recommended source for problems

 Stackoverflow

https://learn.unity.com/
https://forum.unity.com/
https://www.youtube.com/channel/UCYbK_tjZ2OrIZFBvU6CCMiA

