
WRIST AND HAND TRACKING

Corso Realtà Virtuale 2024/2025

eleonora.chitti@unimi.it

mailto:eleonora.chitti@unimi.it


GESTURES AND INTERACTION IN VR

There are different kinds of interaction modes in VR, 

as stated by [2]

• Use controllers and

• Show the hands grabbing the controllers in the VR 

world

• Show the controllers in the VR world

• Show hands instead of the controllers in the VR world

• Use Hand tracking and

• Show hands tracked in the VR world

• Recognize gestures, as the swipe gesture, or drag 

up/down/left/right …

Four possible interaction 
modes, image from [2]



TECHNOLOGIES FOR HAND TRACKING

Any contact with the real world such as sensors or controllers can break the 

immersion in the Virtual World [1]

Therefore, technologies as the following have been commercially deployed:

• Oculus - Quest hand tracking 

• Ultraleap - Leap Motion Hand tracking (also 

with the VR Developer Mount) 

• Haptics sensors, for example the Ultraleap - 

Stratos



LEAP MOTION CONTROLLER

The Leap Motion Controller is a free-hand interaction 

controller, to control input with hand movements, and it 

can be plugged via USB cable connection.

The sensors work with infrared light, and the device has 

a field of view of about 140x120° ; the range is 

approximately from 0.03 up to 0.6 - 0.8 meters above 

the device.

Image from https://www.ultraleap.com/tracking/

The detection and tracking work best when the controller has a clear view of a hand’s silhouette. 

However, the Leap Motion software combines its sensor data with an internal model, with bones and 

joints, of the human hand to cope with challenging tracking conditions and “accurately predict the 

position of a finger or thumb, even if it’s hidden from view”.

https://docs.ultraleap.com/hand-tracking/getting-started.html

http://www.ultraleap.com/tracking/
https://docs.ultraleap.com/hand-tracking/getting-started.html
https://docs.ultraleap.com/hand-tracking/getting-started.html
https://docs.ultraleap.com/hand-tracking/getting-started.html
https://docs.ultraleap.com/hand-tracking/getting-started.html
https://docs.ultraleap.com/hand-tracking/getting-started.html


TOUCH-FREE WITH
LEAP MOTION CONTROLLER



TOUCH FREE (LEAP MOTION) SDK

TouchFree is a software application that detects a user’s hand 

in mid-air and converts it to an on-screen cursor, to allow 

touchscreen-style interactions.

It supports both modalities hover or tap to click.

The TouchFree can be mounted in 3 modes:

• On top of the screen pointing in the screen direction

• On top of the screen pointing in user’s direction

• On the bottom of the screen

Getting started with Unity:

https://docs.ultraleap.com/TouchFree/touchfree-user-

manual/index.html

https://docs.ultraleap.com/TouchFree/touchfree-user-manual/index.html
https://docs.ultraleap.com/TouchFree/touchfree-user-manual/index.html
https://docs.ultraleap.com/TouchFree/touchfree-user-manual/index.html
https://docs.ultraleap.com/TouchFree/touchfree-user-manual/index.html
https://docs.ultraleap.com/TouchFree/touchfree-user-manual/index.html


HAND TRACKING WITH
LEAP MOTION CONTROLLER



LEAP MOTION SDK

To work with Leap Motion you need to install the SDK on the device, currently only devices with 

Windows OS are supported with the latest version of the SDK 4.1.0 (V4 Orion)

MacOS and Linux were supported until SDK 2.3.1 (Now

Gemini version is in Beta)

 https://www.ultraleap.com/gemini-downloads/

The Leap Motion can be used in two modes:

• the VR Headset setup

• the Desktop/Laptop setup



LEAP MOTION SDK

A sum up of software versions’ differences V2 the last one supporting MacOS and Linux, it 

supported tool tracking or touchscreen-style gestures, and Unity, Unreal, C++, C#, Objective-C, 

Java, Python, and JavaScript languages.

• V3 (Orion beta – Orion first version) first version optimized for the VR setup, it preserved 

many of the legacy APIs (including same as V2 languages support), but not tool tracking.

• V4 (Orion) second generation of Orion, optimized for VR, it supports - latest stable version

• V5 (Gemini)

• C# with Unity 

https://docs.ultraleap.com/xr-and-

tabletop/xr/unity/index.html

• Unreal https://docs.ultraleap.com/xr-

and-tabletop/xr/unreal/index.html

• OpenXR 

https://docs.ultraleap.com/openxr/

https://docs.ultraleap.com/xr-and-tabletop/xr/unity/index.html
https://docs.ultraleap.com/xr-and-tabletop/xr/unity/index.html
https://docs.ultraleap.com/xr-and-tabletop/xr/unity/index.html
https://docs.ultraleap.com/xr-and-tabletop/xr/unity/index.html
https://docs.ultraleap.com/xr-and-tabletop/xr/unity/index.html
https://docs.ultraleap.com/xr-and-tabletop/xr/unreal/index.html
https://docs.ultraleap.com/xr-and-tabletop/xr/unreal/index.html
https://docs.ultraleap.com/xr-and-tabletop/xr/unreal/index.html
https://docs.ultraleap.com/xr-and-tabletop/xr/unreal/index.html
https://docs.ultraleap.com/xr-and-tabletop/xr/unreal/index.html
https://docs.ultraleap.com/openxr/


SDK AND UNITY MODULE SETUP

Here the steps to install the Leap Motion SDK and Unity 

Package (Desktop mode):

Install the latest SDK, to have the Leap Motion Software running. 

From the top icon of the sw now you can:

1. Stop Tracking and Resume Tracking

2. Run the Leap Motion Visualizer to check if the device is 

working properly.

3. Run the Leap Motion Control Panel

it will show you the hands tracked, and it permits the 

troubleshooting with the recalibration of the device



UNITY3D LEAP MOTION FEATURES: 
INTERACTION

Interaction (Interaction Engine):

In the Unity Scene you should have the following GO:

Image from https://leapmotion.github.io/UnityModules/interaction-engine.html

More info on the interaction behaviours and physics available here: 

https://leapmotion.github.io/UnityModules/interaction-engine.html#ie-working-with-physx



UNITY3D LEAP MOTION FEATURES: HANDS

Hands Module:

In the Leap Motion Unity Package are available already rigged and Leap Motion compatible hands.

However, if you can use a custom FBX model using the LeapHandsAutorig Monobehaviour Script 

that runs in the Unity Editor.

Using this feature the custom hands model is automatically auto-rigged to make it compatible with the 

Leap Motion.The FBX can be defined as humanoid or not, the script acts differently in case of not 

humanoid, however both cases are supported.

Doc about rigging and custom-hands is available here: 

https://docs.ultraleap.com/xr-and-

tabletop/xr/unity/plugin/features/rigged-hand-

support.html?highlight=hand%20custom

From that link a good point: to remember: “Beware the Uncanny Valley: Hyper-realism isn’t always the 

best approach in VR. Users almost always respond better to stylized or cartoony hands”



ONE EXERCISE (FIRST PART)

1. Import the leap motion UnityPackage (https://docs.ultraleap.com/xr-and-
tabletop/tabletop/unity/getting-started/index.html )

2. Import the fruit UnityPackage (available on laboratory github)

3. Open Food Scene

4. In the scene add the Prefab Interaction Manager that you can find in
Assets ->Third Party -> Ultraleap -> Tracking -> Interaction Engine -> Runtime folder

5. In the scene add the Prefab Capsule Hands.prefabs that you can find in
Assets ->Third Party -> Ultraleap -> Tracking -> Core-> Runtime folder -> Prefabs -> Hands

6. In the scene adds the Prefab Leap Service Provider (Desktop) that you can find in 
Assets -> Third Party -> Ultraleap -> Tracking -> Core-> Runtime folder

https://docs.ultraleap.com/xr-and-tabletop/tabletop/unity/getting-started/index.html
https://docs.ultraleap.com/xr-and-tabletop/tabletop/unity/getting-started/index.html
https://docs.ultraleap.com/xr-and-tabletop/tabletop/unity/getting-started/index.html
https://docs.ultraleap.com/xr-and-tabletop/tabletop/unity/getting-started/index.html
https://docs.ultraleap.com/xr-and-tabletop/tabletop/unity/getting-started/index.html
https://docs.ultraleap.com/xr-and-tabletop/tabletop/unity/getting-started/index.html
https://docs.ultraleap.com/xr-and-tabletop/tabletop/unity/getting-started/index.html


ONE EXERCISE (FIRST PART)

8. In the scene add the Pumpkin Prefab

9. Select the Pumpkin, then in the inspector add a Mesh Collider and check “convex”

10. Always in the Pumpkin inspector add the Interaction Behaviour (Script)

11. Now run in the editor and try to grab the pumpkin with the hand

12. Now save the updated Pumpkin prefab in the Prefabs folder



ONE EXERCISE (SECOND PART - OPTIONAL)

1. In the Scene click on the object Cube UI Button Base (child of the object Cube)

2. Add the Cube UI Button as child to the Cube UI Button Base that you can find in

Assets ->Third Party -> Ultraleap -> Tracking -> Examples -> Interaction Engine Examples

->Common Example Assets -> Prefabs

3. Select the Cube UI Button, then in the inspector in the Interaction Button (Script) associate the public 

variable “Manager” with the Interaction Manager in the scene

4. Select the TestScript object in the scene, and in the inspector in the public variable Items add the 

Pumpkin prefab in the Prefabs folder



REFERENCES

1 R. McGloin, K. Farrar, and M. Krcmar, “Video games, immersion, and cognitive 

aggression: does the controller matter?” Media psychology, vol. 16, no. 1, pp. 65–87, 

2013

2 Jan-Niklas Voigt-Antons and Tanja Kojić and Danish Ali and Sebastian Möller, 

“Influence of Hand Tracking as a way of Interaction in Virtual Reality on User 

Experience”, 2020, 2020 Twelfth International Conference on Quality of 

Multimedia Experience (QoMEX), arXiv: https://arxiv.org/abs/2004.12642


	Slide 1: WRIST AND HAND TRACKING
	Slide 2: GESTURES AND INTERACTION IN VR
	Slide 3: TECHNOLOGIES FOR HAND TRACKING
	Slide 4: LEAP MOTION CONTROLLER
	Slide 5
	Slide 6: TOUCH FREE (LEAP MOTION) SDK
	Slide 8
	Slide 9: LEAP MOTION SDK
	Slide 10: LEAP MOTION SDK
	Slide 11: SDK AND UNITY MODULE SETUP
	Slide 16: UNITY3D LEAP MOTION FEATURES: INTERACTION
	Slide 17: UNITY3D LEAP MOTION FEATURES: HANDS
	Slide 18: ONE EXERCISE (FIRST PART)
	Slide 19: ONE EXERCISE (FIRST PART)
	Slide 20: ONE EXERCISE (SECOND PART - OPTIONAL)
	Slide 25: REFERENCES

