
Unity introduction
& Leap Motion Controller

Lab 04

Renato Mainetti
Jacopo Essenziale

renato.mainetti@unimi.it
jacopo.essenziale@unimi.it

mailto:renato.mainetti@unimi.it
mailto:jacopo.essenziale@unimi.it

Unity 3D Game Engine

2

https://store.unity.com/

Official Unity 3D Tutorials

• https://unity3d.com/learn/tutorials/

3

https://unity3d.com/learn/tutorials/

Interface Overview

4

GameViewSceneView

Hierarchy

Inspector panel

Project panel

Scene View:
• qwert ->
• Left mouse click = PAN
• Right mouse click = Look around like FPS
• Alt + Left = Orbit around your looking point
• Alt + Right = Zoom
• wer = position - rotation - scale
• Center-Pivot, Global-Local

• Focus to an object: dbl-click in hierarchy or press f
• Several display mode (Shaded,wireframe, etc…)
• Search scene, fade out all the other objects
• Light on, sky and audio preview
• Perspective 3D view to Ortho

5

Game View:
• Active when play button is pressed (playmode tint)

• When in play mode every change is not saved

• Paused and stepping forward frame by frame

• Aspect ratio and resolution (to test deploy platforms)

6

Hierarchy Panel:

• If the parent is the world, RTS relatively to the world

• If it’s child, RTS relatively to it’s parent

• Create button is the same as -> game object – create other

• Search like the one in the hierarchy view

• Search could be filtered by type: t:Light, t:AudioSource
7

Project Panel:

• Shows all the contents in Asset folder

• Used to organize all the assets

• New object could be imported(into the folder or by drag
and drop) or created by right click mouse

• Search for assets

• Thumbnail using the zoom slider

• Filter by type and labels

8

Inspector Panel:

• Contextual

• Static flag is used for static object in the scene (used to bake
light, evaluate navigation path, etc.)

• Tag (find objects by code)

• Layer (render, collision, etc.)

• List all components attached to the current selected object

• Lock inspector to current object (useful to copy components
properties between objects)

9

Asset store:

10

Import custom packages:
.unitypackage

11

Extending Unity: Package Manager

12

Game Object:
• Populate the Unity scene (visible in the hierarchy)

• Game object are made up by several components that could be
added through menu component add, or through the add
component button in the inspector

• Every game object (also an empty) has a transform component

• The game object could be activated/deactivated

• Component could be added to the game object

• Component could also be copied and pasted to another game
object

13

Physics:

• Add a plane

• Add a cube

• The default plane and cube
already come with a box collider
attached

• Add a Rigid Body component
(Physics)

• Run the scene

• Let’s now try adding a physic
material like rubber

14

Import Blender models into Unity3D:

15

Blender models could be imported into Unity 3D:
• You can export the model from Blender using the .fbx format
• You can drag the .blend file into the Assets folder (blender required)

Unity uses blender to auto export an fbx.

https://en.wikipedia.org/wiki/FBX
http://zakjr.com/blog/blender-to-unity-workflow-part-1/

Scripting:
Two languages could be used as scripting language in
blender:
• C#

• Scripts are mainly used to implement the game
mechanics

• They could also be used to customize the editor or to
create for example PCG.

• A script could be attached to a game object dragging it
over the inspector or using the component add menu

16

Scripting:

• Two important methods:

• Start() -> called when the object is initialized

• Update() -> called once per frame

• How to move a cube?

Void Update()

{

transform.Translate(new Vector3(1.0f, 0.0f, 0.0f));

}

17

Scripting:

• Two important methods:

• Start() -> called when the object is

• Update() -> called once per frame

• How to move a cube, fps independent way?
Void Update()

{

Debug.Log(Time.deltaTime);

transform.Translate(new Vector3(Time.deltaTime, 0.0f, 0.0f));

}

18

Prefab:
• To store a game object and its components as an

asset we can create a prefab

• To create a prefab simply drag the game object
from the hierarchy view to the asset folder

• The prefab could then be instantiated runtime or
added again to the scene

19

UI: a simple score viewer:

20

Deploy:

21

Leap Motion Controller
https://www.leapmotion.com

22

https://www.leapmotion.com/

An Hand Tracking Device

• It allow us to track the position of the user hand in
real-time, pretty much like kinect do with our body.

• It’s specialized in hand tracking, we can get the
position of each bone of our fingers!

• It’s very fast! (up to 300 fps, consider that kinect 2
RGB camera works at 30fps).

• It’s simple (both in design and ease of use).

• It’s cheap! You can get one for 70€!

23

HARDWARE (1/2)

• 3 Infrared (IR) leds

• 2 IR wide angle cameras

24

Inside the leap

Thanks to the wide angle lenses of
the camera the leap motion is able
to monitor an imaginary interaction
box of 60 w x 60 h x 60 d cm.

HARDWARE (2/2)

Leds light up the scene with IR light (outside human visible
spectrum), both cameras capture the image.

The intersection of the binocular cameras field of view
creates a shape of an inverted pyramid which defines our
interaction area

25

How does it work?
http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/

http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/

SOFTWARE

• Hardware just send simple raw images to Leap
Motion runtime service through the USB cable

• Images are processed using CV algorithms to
reconstruct 3d position of what the camera sees.

• Techniques are pretty similar to the ones used for
MOCAP: we got two images, we try to detect the
same point in both of them and then we
triangulate to detect position.

• Software also tries to infer occluded objects
position.

• Some filtering is used to guarantee data coherence
between frames.

26

The real magic happen here…

SDK + Unity Assets

• Leap Motion provides an easy to use SDK to access
controller data within your applications

27

• Supported languages:
• C++
• C#
• Objective C

• Supported game engines:
• Unity

• Unreal Engine

• Java
• Python
• JavaScript

• Some useful assets for game engines are also
provided, we’ll have a look at them in a moment!

https://developer.leapmotion.com/documentation/

https://developer.leapmotion.com/orion/

https://developer.leapmotion.com/documentation/
https://developer.leapmotion.com/orion/

HANDS ON – LITERALLY ☺
• Requirements:

• Leap motion runtime installed

• Unity project created, Leap .unitypackage imported

• EX#1: Let’s build our first leap controller, we want to detect the position of the
palm of the hand and make the security camera follow it.

• EX#2: Virtual hands visualization.

• EX#3: Interact with the environment.

• EX#4: Interact with the environment (in a real game).

• EX#5: Grasping Objects (Physics Issues).

• EX#6: Grasping Objects (Interaction Engine).

28

Leap Motion Unity Assets

Leap Motion SDK also contain a unity package with a
lot of ready to use stuff we can integrate in our
games without bothering about writing our own
controllers…

29

• Hand Controllers
• Hand Models
• Grasping utilities
•

Something about the user
experience:

• We should not forget that the emotional part
makes a game/story fascinating

• We are going to create a little game with a very
simple mechanic.

• The player impersonate an assembly line workman

• He should grab bad pieces leaving on the line the
good ones.

• A surveillance camera is active…someone is
watching us…

30

Leap motion and VR

• Leap motion can also be used vertically and
mounted on an Head Mounted Display (HMD) such
as the Oculus Rift

31

https://www.youtube.com/watch?v=rnlCGw-0R8g

• Orion SDK are thought
with VR in mind.

• You can try this
combination for your
final project in the lab!

https://www.youtube.com/watch?v=rnlCGw-0R8g

Future of leap motion

32

• Interaction engine
http://blog.leapmotion.com/introducing-interaction-engine-early-access-beta/

• Android VR, embedding the
leap motion in visors

• https://developer.leapmotion.com/android#10
7

http://blog.leapmotion.com/introducing-interaction-engine-early-access-beta/
https://developer.leapmotion.com/android#107

