
3D Cameras

Manuel Pezzera – manuel.pezzera@unimi.it

Alessandro Tironi – alessandro.tironi@unimi.it

Jacopo Essenziale – jacopo.essenziale@unimi.it

Renato Mainetti – renato.mainetti@unimi.it

Laboratorio di Realtà Virtuale

mailto:manuel.pezzera@unimi.it
mailto:alessandro.tironi@unimi.it
mailto:jacopo.essenziale@unimi.it
mailto:renato.mainetti@unimi.it

Overview

• 3D Cameras

• Microsoft Kinect, Orbbec Astra, Intel RealSense

• 2D Cameras and human pose estimation

• OpenPose, PoseNet, wrnch.ai

• Kinect 2 and Unity

• Microsoft Kinect SDK

• Kinect Unity Integration

• Avateering in Unity

• Kinect as NUI

• Kinect & VR

Overview

• 3D cameras, also called “Depth Cameras”, are able to obtain a “3D photo”

of the environment.

• It means that can calculate the distance between the camera and a

subject.

• See the following image:

• The left image is recorded using a classical 2D camera and for an

algorithm could be difficult to find the silhouette of the person. While, on

the other hand, the picture on the right is captured using Kinect. The

background is farther, so it has a different color.

3D Cameras: overview

• Depth image is used to detect human posture

• Kinect 1 recognizes 20 different body joints.

• Kinect 2 has been improved and can recognize 26 joints.

• Born as a gaming device/controller it has also been widely used in the

research field.

• Lot of projects used it to record people movement trying to diagnose

diseases or helping with home-rehabilitation.

3D Cameras: overview

• Most common depth cameras are:

• Kinect 1

• Kinect 2

• Orbbec

• Intel RealSense

• HoloLens

• Coming soon:

• Azure Kinect

Kinect 1 Kinect 2

Orbbec Astra Intel Realsense D435

Azure Kinect HoloLens

Kinect 1

• Launched in 2010 (for Xbox 360).

• Windows version came in 2012

• Near mode added

• Kinect 1 has four main components:

• An infrared projector

• A RBG camera

• 640x480 @ 30fps, 1280x960 @ 12fps

• An infrared camera

• 640x480 @ 30fps

• Microphones array

• 4 microphones

Kinect 1: how does it work?

The projector shoots an

irregular pattern of dots invisible to

humans.

1

CMOS sensors in the IR

camera can detect the infrared light

bounced off our subjects

2

Depth is calculated for every

pixel in the scene: Kinect compares

the data captured by the IR camera

with the irregular pattern that has

been projected. Triangulation

methods are used to calculate the

final distance.

This technology is called “structured

light”.

3

Useful videos:
• https://www.youtube.com/watch?v=uq9SEJxZiUg
• https://www.youtube.com/watch?v=dTKlNGSH9Po

https://www.youtube.com/watch?v=uq9SEJxZiUg
https://www.youtube.com/watch?v=dTKlNGSH9Po

Kinect 2

• Launched in 2013 for Xbox One and

PCs.

• Main components:

• An RBG camera

• 1920x1080 @ 30fps

• An infrared camera

• 512x424 @ 30fps

• Microphones array

• 4 microphones

• Kinect 2 has the “new” Time of Flight (ToF) technology to calculate the

depth image.

• No dots are used here.

Time of Flight technology

• Useful link:
• https://blogs.technet.microsoft.com/microsoft_blog/2013/10/02/collaborat

ion-expertise-produce-enhanced-sensing-in-xbox-one/

https://blogs.technet.microsoft.com/microsoft_blog/2013/10/02/collaboration-expertise-produce-enhanced-sensing-in-xbox-one/

Kinect: human recognition

• We understood how Kinect 1 and Kinect 2 obtain the depth image.

• But how do they use this image to recognize human posture?

• Usually random decision forest classifiers are used

Detailed information: Shotton, Jamie, et al. "Real-time human pose recognition in

parts from single depth images." Cvpr. Vol. 2. 2011.

Kinect 1 and Kinect 2 skeletons

Kinect 1 Kinect 2

Kinect 2 Demo

https://www.youtube.com/watch?v=OWzjn656kb4

https://www.youtube.com/watch?v=OWzjn656kb4

Kinect 2 Demo

Video: https://www.youtube.com/watch?v=8_yMPLSZSEs

Kinect 2 HD Face: https://github.com/Vangos/kinect-2-face-hd

https://www.youtube.com/watch?v=8_yMPLSZSEs
https://github.com/Vangos/kinect-2-face-hd

Kinect Application - Unity

• Few innovative uses of Microsoft Kinect

• Produce high-quality 3D scans

• E.g. Kinect Fusion

• Help with stroke (or other diseases) recovery

• Translate sign language

• Retrieve data via gestures

• Control robots with body movement

Kinect Fusion Translate sign language Retrieve data via gestures

Kinect 1 and Kinect 2: depth image comparison

• Kinect 1 records reliable images just after starting, Kinect 2 needs to be pre-heat for

at least 25 minutes in order to achieve reliable results.

• Accuracy decreases exponentially if we increase distance for Kinect 1, Kinect 2

does not have this problem.

• Artificial light can affect Kinect v1. Kinect 1 is total blindness in present of sunlight

while Kinect 2 works quite good.

Source:

• Wasenmüller, Oliver, and Didier Stricker.

"Comparison of kinect v1 and v2 depth images in

terms of accuracy and precision."

• Zennaro, S., et al. "Performance evaluation of

the 1st and 2nd generation Kinect for multimedia

applications."

Azure Kinect

• Preorder started February 2019

• 12 MP RBG Camera

• Up to 3840x2160 @ 30 FPS

• 1 MP Depth camera

• 640x576 @ 30 FPS

• 512x512 @ 30 FPS

• 1024x1024 @ 15 FPS

• Time-Of-Flight camera

• Motion sensor

• Accelerometer and gyroscope

• Microphone array

• 7 microphone circular array

• Vision API & Speech Service Sdk (from Azure)

Azure Kinect

Depth sensor1

7-mic array2

RBG camera3

Accelerometer

and gyroscope

4

External sync

pins

5

Azure API

https://www.youtube.com/watch?v=2URblck97y8

https://www.youtube.com/watch?v=2URblck97y8

Human Pose Estimation with 2D Cameras

• In the last years few algorithms to estimate

human pose from 2D cameras have been

developed

• E.g.: OpenPose, PoseNet, wrnch.ai

• These algorithms extract joints positions

from a classic 2D image.

• Both offline and real-time!

OpenPose

• Source code available:

• https://github.com/CMU-Perceptual-Computing-Lab/openpose

• Real time

• Multi-person

• Able to detect human body, hand, facial and foot, for a total of 135 keypoints

• Face has 70 keypoints!

• Unity plugin available:

• https://github.com/CMU-Perceptual-Computing-Lab/openpose_unity_plugin

• Demo: https://www.youtube.com/watch?v=Cu7g2Ldm-WM

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose_unity_plugin
https://www.youtube.com/watch?v=Cu7g2Ldm-WM

OpenPose

• Unbelievable!

• But…cons?

• 9.75 FPS on a GTX 1080 Ti (body only)

• All keypoints (body + hands + face): 3 FPS (4 if you are lucky)

• With two GTX 1080 Ti we can reach 18 FPS

OpenPose: how does it work?

• A convolutional network predicts a set of 2D confidence map of body parts

locations and a set of 2D vector fields of part affinities, which encode the degree

of association between parts.

• Non Maximum Suppression used to extract body parts locations.

• Bipartite matchings are performed to associate body part candidates.

• Finally merge all the limbs together.

• Source: Cao, Zhe, et al. "OpenPose: realtime multi-person 2D pose estimation

using Part Affinity Fields." arXiv preprint arXiv:1812.08008 (2018).

PoseNet

• Real-time multi-person human pose detection (like OpenPose).

• Demo online available:

• https://storage.googleapis.com/tfjs-models/demos/posenet/camera.html

• If you have a webcam you can try it

• Simpler than OpenPose, it has only 17 keypoints.

• Unity plugin available: https://github.com/infocom-tpo/PoseNet-Unity

https://storage.googleapis.com/tfjs-models/demos/posenet/camera.html
https://github.com/infocom-tpo/PoseNet-Unity

wrnch.ai

• Human pose detection

• Activity recognition

• Gesture recognition

• It works on mobile devices

• No price, no demo, unable to try, few information available…

Kinect & Unity

• Let’s try now Kinect with Unity.

Kinect’s rotations

• For each frame, Kinect 2
returns the orientation
quaternion of each joint (leaf
joints excluded).

• Each quaternion represents
the absolute rotation of the
parent bone (e.g: the
ElbowRight quaternion
represents the right arm
rotation).

• The Y axis is always parallel to
the bone

26

Microsoft Kinect SDK 2.0

• The SDK gives you the ability to access all the Kinect’s features (frame by
frame):

• Color sensor (RGB image)
• Depth sensor (Float depth image)
• Audio samples
• Body tracking (Joint Pos (X,Y,Z), Bone Quaternion (X,Y,Z,W))

• Other features:
• Face tracking
• Gesture Recognition

27

Sensor initialization and joint evaluation

• Let’s try showing the movements of the joints in a unity scene.
• Remember to deallocate each frame after using it. (in c# use the using

structure)
• It is possible to retrieve the 3D coordinates using the Body.Joints

dictionary:

• Pay attention to the reference axis system! (Kinect is a “right-handed”)

28

Sensor initialization and shutdown

29

From positions to rotations

• We show in another scene how Kinect
rotations change in real time.

• We switch from Kinect’s reference system
to Unity’s system by reverting Z and W
values for each quaternion.

• If we want to apply additional rotations,
we multiply the retrieved quaternion by
another.

30

Avateering

• Let’s import an already skinned avatar
from Blender and apply rotations to
joints.

• If we correctly polish rotation offsets
then we will see the mesh move
without any deformation.

31

How to use the Kinect package inside our scene

• There is a singleton KinectManager object which constantly retrieves a new
frame and sends it to a set of handles (named KinectServices). Each
KinectService will elaborate the new frame independently.

• The avateering-related KinectService will apply received rotations to the
avatar, after the required elaborations.

32

Avateering algorithm (simplified)

33

Hitting cubes

• We want the avatar to prevent the red cubes from arriving to the end of
the belt by punching or kicking them, so we apply a rigidbody and a sphere
collider to hands and feet.

34

Hitting cubes

• In order to compute the punch/kick direction we buffer the hands and feet
positions from the previous frame. Whenever a collision occours, we
compute the direction vector with the current position and the buffered
one.

35

Can you optimize this?

• KinectManager calls AcquireLatestFrame once for each game frame. This
means that the game frame rate will be forced to the Kinect’s frame rate!

• Possible solution: multi-threading! A thread reads data from Kinect and
writes into a buffer. The game thread reads the buffer when needed.

• … locks?

36

Kinect and VR

37

• You can try this combination for your final
project in the lab!

